Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assessing the environmental sustainability of ethanol from integrated biorefineries.

Identifieur interne : 002362 ( Main/Exploration ); précédent : 002361; suivant : 002363

Assessing the environmental sustainability of ethanol from integrated biorefineries.

Auteurs : Temitope Falano [Royaume-Uni] ; Harish K. Jeswani ; Adisa Azapagic

Source :

RBID : pubmed:24478110

Descripteurs français

English descriptors

Abstract

This paper considers the life cycle environmental sustainability of ethanol produced in integrated biorefineries together with chemicals and energy. Four types of second-generation feedstocks are considered: wheat straw, forest residue, poplar, and miscanthus. Seven out of 11 environmental impacts from ethanol are negative, including greenhouse gas (GHG) emissions, when the system is credited for the co-products, indicating environmental savings. Ethanol from poplar is the best and straw the worst option for most impacts. Land use change from forest to miscanthus increases the GHG emissions several-fold. For poplar, the effect is opposite: converting grassland to forest reduces the emissions by three-fold. Compared to fossil and first-generation ethanol, ethanol from integrated biorefineries is more sustainable for most impacts, with the exception of wheat straw. Pure ethanol saves up to 87% of GHG emissions compared to petrol per MJ of fuel. However, for the current 5% ethanol-petrol blends, the savings are much smaller (<3%). Therefore, unless much higher blends become widespread, the contribution of ethanol from integrated biorefineries to the reduction of GHG emissions will be insignificant. Yet, higher ethanol blends would lead to an increase in some impacts, notably terrestrial and freshwater toxicity as well as eutrophication for some feedstocks.

DOI: 10.1002/biot.201300246
PubMed: 24478110
PubMed Central: PMC4674963


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Assessing the environmental sustainability of ethanol from integrated biorefineries.</title>
<author>
<name sortKey="Falano, Temitope" sort="Falano, Temitope" uniqKey="Falano T" first="Temitope" last="Falano">Temitope Falano</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester</wicri:regionArea>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Manchester</region>
</placeName>
<orgName type="university">Université de Manchester</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jeswani, Harish K" sort="Jeswani, Harish K" uniqKey="Jeswani H" first="Harish K" last="Jeswani">Harish K. Jeswani</name>
</author>
<author>
<name sortKey="Azapagic, Adisa" sort="Azapagic, Adisa" uniqKey="Azapagic A" first="Adisa" last="Azapagic">Adisa Azapagic</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24478110</idno>
<idno type="pmid">24478110</idno>
<idno type="doi">10.1002/biot.201300246</idno>
<idno type="pmc">PMC4674963</idno>
<idno type="wicri:Area/Main/Corpus">002317</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002317</idno>
<idno type="wicri:Area/Main/Curation">002317</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002317</idno>
<idno type="wicri:Area/Main/Exploration">002317</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Assessing the environmental sustainability of ethanol from integrated biorefineries.</title>
<author>
<name sortKey="Falano, Temitope" sort="Falano, Temitope" uniqKey="Falano T" first="Temitope" last="Falano">Temitope Falano</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester</wicri:regionArea>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Manchester</region>
</placeName>
<orgName type="university">Université de Manchester</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jeswani, Harish K" sort="Jeswani, Harish K" uniqKey="Jeswani H" first="Harish K" last="Jeswani">Harish K. Jeswani</name>
</author>
<author>
<name sortKey="Azapagic, Adisa" sort="Azapagic, Adisa" uniqKey="Azapagic A" first="Adisa" last="Azapagic">Adisa Azapagic</name>
</author>
</analytic>
<series>
<title level="j">Biotechnology journal</title>
<idno type="eISSN">1860-7314</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biofuels (MeSH)</term>
<term>Environment (MeSH)</term>
<term>Ethanol (adverse effects)</term>
<term>Ethanol (metabolism)</term>
<term>Fermentation (MeSH)</term>
<term>Greenhouse Effect (MeSH)</term>
<term>Petroleum (adverse effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biocarburants (MeSH)</term>
<term>Effet de serre (MeSH)</term>
<term>Environnement (MeSH)</term>
<term>Fermentation (MeSH)</term>
<term>Pétrole (effets indésirables)</term>
<term>Éthanol (effets indésirables)</term>
<term>Éthanol (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>Ethanol</term>
<term>Petroleum</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ethanol</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Biofuels</term>
</keywords>
<keywords scheme="MESH" qualifier="effets indésirables" xml:lang="fr">
<term>Pétrole</term>
<term>Éthanol</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Éthanol</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Environment</term>
<term>Fermentation</term>
<term>Greenhouse Effect</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biocarburants</term>
<term>Effet de serre</term>
<term>Environnement</term>
<term>Fermentation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper considers the life cycle environmental sustainability of ethanol produced in integrated biorefineries together with chemicals and energy. Four types of second-generation feedstocks are considered: wheat straw, forest residue, poplar, and miscanthus. Seven out of 11 environmental impacts from ethanol are negative, including greenhouse gas (GHG) emissions, when the system is credited for the co-products, indicating environmental savings. Ethanol from poplar is the best and straw the worst option for most impacts. Land use change from forest to miscanthus increases the GHG emissions several-fold. For poplar, the effect is opposite: converting grassland to forest reduces the emissions by three-fold. Compared to fossil and first-generation ethanol, ethanol from integrated biorefineries is more sustainable for most impacts, with the exception of wheat straw. Pure ethanol saves up to 87% of GHG emissions compared to petrol per MJ of fuel. However, for the current 5% ethanol-petrol blends, the savings are much smaller (<3%). Therefore, unless much higher blends become widespread, the contribution of ethanol from integrated biorefineries to the reduction of GHG emissions will be insignificant. Yet, higher ethanol blends would lead to an increase in some impacts, notably terrestrial and freshwater toxicity as well as eutrophication for some feedstocks. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24478110</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1860-7314</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Biotechnology journal</Title>
<ISOAbbreviation>Biotechnol J</ISOAbbreviation>
</Journal>
<ArticleTitle>Assessing the environmental sustainability of ethanol from integrated biorefineries.</ArticleTitle>
<Pagination>
<MedlinePgn>753-65</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/biot.201300246</ELocationID>
<Abstract>
<AbstractText>This paper considers the life cycle environmental sustainability of ethanol produced in integrated biorefineries together with chemicals and energy. Four types of second-generation feedstocks are considered: wheat straw, forest residue, poplar, and miscanthus. Seven out of 11 environmental impacts from ethanol are negative, including greenhouse gas (GHG) emissions, when the system is credited for the co-products, indicating environmental savings. Ethanol from poplar is the best and straw the worst option for most impacts. Land use change from forest to miscanthus increases the GHG emissions several-fold. For poplar, the effect is opposite: converting grassland to forest reduces the emissions by three-fold. Compared to fossil and first-generation ethanol, ethanol from integrated biorefineries is more sustainable for most impacts, with the exception of wheat straw. Pure ethanol saves up to 87% of GHG emissions compared to petrol per MJ of fuel. However, for the current 5% ethanol-petrol blends, the savings are much smaller (<3%). Therefore, unless much higher blends become widespread, the contribution of ethanol from integrated biorefineries to the reduction of GHG emissions will be insignificant. Yet, higher ethanol blends would lead to an increase in some impacts, notably terrestrial and freshwater toxicity as well as eutrophication for some feedstocks. </AbstractText>
<CopyrightInformation>© 2014 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Falano</LastName>
<ForeName>Temitope</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jeswani</LastName>
<ForeName>Harish K</ForeName>
<Initials>HK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Azapagic</LastName>
<ForeName>Adisa</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>02</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Biotechnol J</MedlineTA>
<NlmUniqueID>101265833</NlmUniqueID>
<ISSNLinking>1860-6768</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056804">Biofuels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010578">Petroleum</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3K9958V90M</RegistryNumber>
<NameOfSubstance UI="D000431">Ethanol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D056804" MajorTopicYN="N">Biofuels</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="Y">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000431" MajorTopicYN="N">Ethanol</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005285" MajorTopicYN="N">Fermentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017752" MajorTopicYN="N">Greenhouse Effect</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010578" MajorTopicYN="N">Petroleum</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Biofuels</Keyword>
<Keyword MajorTopicYN="N">Environmental impacts</Keyword>
<Keyword MajorTopicYN="N">Ethanol</Keyword>
<Keyword MajorTopicYN="N">Integrated biorefineries</Keyword>
<Keyword MajorTopicYN="N">Life cycle assessment</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>10</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>12</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>01</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24478110</ArticleId>
<ArticleId IdType="doi">10.1002/biot.201300246</ArticleId>
<ArticleId IdType="pmc">PMC4674963</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechnol J. 2011 Nov;6(11):1348-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22076745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2002 Nov;29(5):221-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12407454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Feb 29;319(5867):1235-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18258862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2012 Sep;7(9):1122-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22829529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2014 Jan;32(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24364880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2012 Jan;7(1):34-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22147620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2012 Feb;7(2):284-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21751391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2009 Feb;100(4):1515-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18976902</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Manchester</li>
</region>
<settlement>
<li>Manchester</li>
</settlement>
<orgName>
<li>Université de Manchester</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Azapagic, Adisa" sort="Azapagic, Adisa" uniqKey="Azapagic A" first="Adisa" last="Azapagic">Adisa Azapagic</name>
<name sortKey="Jeswani, Harish K" sort="Jeswani, Harish K" uniqKey="Jeswani H" first="Harish K" last="Jeswani">Harish K. Jeswani</name>
</noCountry>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Falano, Temitope" sort="Falano, Temitope" uniqKey="Falano T" first="Temitope" last="Falano">Temitope Falano</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002362 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002362 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24478110
   |texte=   Assessing the environmental sustainability of ethanol from integrated biorefineries.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24478110" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020